
EPFL� Fall 2024

SOLUTIONS: Series 2

Di�erential Geometry IV:

General Relativity
G. Moschidis

19 Sep. 2024

2.1 On Minkowski spacetime (Rn+1, η), let (x0, . . . , xn) be the standard Cartesian coordinate sys-
tem. Compute the induced metric on the submanifolds

S
(n,1)
−1 =

{
− (x0)2 +

n∑
i=1

(xi)2 = −1
}

and

S
(n,1)
+1 =

{
− (x0)2 +

n∑
i=1

(xi)2 = +1
}

(the latter is known as de-Sitter spacetime).

Solution. In order to compute the induced metric on those manifolds, we �rst have to �nd a
convenient parametrization of them. For S

(n,1)
−1 , it is convenient to express it as the graph of a

function over the {x0 = 0} hyperplane; that is to say, we de�ne Ψ : Rn → S
(n,1)
−1 by the relation:

Ψ(y1, . . . , yn) = (x0, . . . , xn) with xα =

{√
1 + ∥y∥2, if α = 0,

yα, if α ⩾ 1,

where

∥y∥2 .
=

n∑
i=1

(yi)2.

(Ψ de�ned as above parametrizes only one of the two components of S
(n,1)
−1 ; the other one is parametrized

using x0 = −
√

1 + ∥y∥2 instead of x0 = +
√

1 + ∥y∥2, but the resulting expression for the induced

metric is the same). Then, in the coordinate chart Ψ−1 on S
(n,1)
−1 , the induced metric g = Ψ∗η takes

the form:

g = Ψ∗η = −Ψ∗(dx0)2 +
n∑

i=1

Ψ∗(dxi)2

= −
(
d
(√

1 + ∥y∥2
))2

+
n∑

i=1

(dyi)2

= −
(∑n

i=1 y
idyi

)2
1 + ∥y∥2

+
n∑

i=1

(dyi)2

=
(
δij −

yiyi

1 + ∥y∥2
)
dyidyj.

Notice that the above metric is Riemannian, i.e. positive de�nite, since the matrix δij − yiyi

1+∥y∥2 is

positive de�nite (here, we used the fact that for any vector v ∈ R
n, the matrix I−v⊗v has eigenvalues

(1 − ∥v∥2, 1, . . . , 1)). This is, of course, to be expected, since S
(n,1)
−1 is a spacelike hypersurface of

(Rn+1, η). In polar coordinates (r, ω) on R
n \ 0 ≃ (0,+∞)× S

n−1, g takes the form

g =
1

1 + r2
dr2 + r2gSn−1(ω).

Page 1



EPFL� Fall 2024

SOLUTIONS: Series 2

Di�erential Geometry IV:

General Relativity
G. Moschidis

19 Sep. 2024

The metric g is in fact isometric to the hyperbolic metric on R
n.

Since S
(n,1)
+ has the topology of a cylinder, we will use for it a parametrization by R× S

n−1. To

this end, let us switch to polar coordinates (x0, r, ω) on R
n+1 (so that r =

√∑n
i=1(x

i)2 ∈ [0,+∞)

and ω ∈ S
n−1 with ωi = xi

r
, i ⩾ 1). In these coordinates, the Minkowski metric η takes the form:

η = −(dx0)2 + dr2 + r2gSn−1(ω),

while S
(n,1)
+ =

{
(x0, r, ω) : −(x0)2 + r2 = 1

}
. Let us consider the parametrization Φ : R × S

n−1 →

S
(n,1)
+ given by

Φ(t, θ) = (x0, r, θ) with x0 = t, r =
√
1 + t2, θ = ω.

Then, the induced metric gdS on S
(n,1)
+ (the so-called de-Sitter metric) takes the following form

gdS = Φ∗η = −Φ∗(dx
0)2 + Φ∗dr

2 + r2 ◦ Φ · Φ∗gSn−1(ω)

= −dt2 +
(
d
(√

1 + t2
))2

+ (1 + t2)gSn−1(θ)

= − 1

1 + t2
dt2 + (1 + t2)gSn−1(θ).

2.2 On Minkowski spacetime (Rn+1, η), let p, q ∈ R
n+1 be two points such that q ∈ I+(p). Let also

γ0 : [0, 1] → R
n+1 be the straight line segment connecting p to q (i.e. γ0(0) = p, γ0(1) = q and

γ̈0 = 0) and γ : [0, 1] → R
n+1 be any other causal curve such that γ(0) = p and γ(1) = q. Show

that the corresponding lengths of the curves satisfy

ℓ(γ0) ⩾ ℓ(γ).

This is a manifestation of the twin paradox in special relativity.
Hint: Approximate γ by a polygonal causal curve and, using the inverse triangle inequality for

causal vectors, show that the line segment connecting p and q has greater or equal length to a

broken line segment connecting the same points.

Solution. Let us �rst assume that the curve γ is a polygonal, future directed causal curve joining p
and q, that is to say, there exist points {pk}Nk=0 ∈ R

n+1 such that

1. p0 = p, pN = q,

2. The curve γ is the union of the line segments −−−−→pk−1pk connecting pk−1 to pk; explicitly, this
means that there exists some partition {tk}Nk=0 of [0, 1] such that t0 = 0, tN = 1 and

γ(s) =
tk+1 − s

tk+1 − tk
pk +

s− tk
tk+1 − tk

pk+1 if s ∈ [tk, tk+1].

3. For all k = 0, . . . , N − 1, the vectors −−−−→pk−1pk are future directed and causal.
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Recall that the inverse triangle inequality states that, in any Lorentzian inner product space (V,m),
if v, w are two causal vectors belonging to the same component of the timecone, then

∥v + w∥ ⩾ ∥v∥+ ∥w∥.

In our case, noting that

−→pq =
N−1∑
k=0

−→pkpk+1,

we have (thinking of those vectors as belonging to TpR
n+1 ≃ R

n+1 by translating them to have a
starting point at p):

∥−→pq∥ηp ⩾
N−1∑
k=0

∥−→pkpk+1∥ηp .

Noting that, in this case

ℓ(γ0) = ∥−→pq∥ηp and ℓ(γ) =
N−1∑
k=0

∥−→pkpk+1∥ηp ,

we therefore have
ℓ(γ0) ⩾ ℓ(γ).

Assume, now, that γ is a C1 causal curve; in that case, since γ̇ is continuous, it has to belong
everyewhere to the same connected component of the timecone, therefore it has to be future directed
(since q ∈ I+(p)). We will show that, for any ϵ > 0 su�ciently small, there exists a point qϵ ∈ I+(p)
and a polygonal future directed, causal curve γϵ : [0, 1] → R

n+1 with γϵ(0) = p, γϵ(1) = qϵ and such
that:

� qϵ → q as ϵ → 0,

�

∣∣ℓ(γϵ)− ℓ(γ)
∣∣ → 0 as ϵ → 0.

Assume for a moment that such a point qϵ and curve γϵ indeed exists for all su�ciently small ϵ > 0.
Then, since γϵ is a polygonal curve, by our previous argument we have

∥−→pqϵ∥ηp ⩾ ℓ(γϵ).

As ϵ → 0, we have (by our assumptions on qϵ, γϵ) that qϵ → q and ℓ(γϵ) → ℓ(γ). Therefore, since
∥−→pq∥ηp = ℓ(γ0), taking the limit ϵ → 0 in the above inequality results in the desired statement:

ℓ(γ0) ⩾ ℓ(γ).

It, therefore, remains to construct the approximating point qϵ and polygonal curve γϵ satisfying
Conditions 1 and 2 above. To this end, let us �rst note that any piecewise C1 curve ζ : [0, 1] → R

n+1
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can be obtained from its derivative ζ̇ : [0, 1] → R
n+1 (here we view ζ̇(t) as a vector with base point

translated to 0) by simply integrating componentwise:

ζ(t) = ζ(0) +

� t

0

ζ̇(s) ds

(in the above, + denotes simply summation in Rn+1 ) Thus, in order to approximate γ by a polygonal
curve γϵ, we will �rst approximate γ̇ by a piecewise constant curve γ̃ϵ and then set

γϵ(t) = γ(0) +

� t

0

γ̃ϵ(s) ds.

Since γ is C1, γ̇ is continuous on [0, 1]; since, in addition, [0, 1] is a compact interval, γ̇ must also
be uniformly continuous. Therefore, for any ϵ > 0, there exists a δ = δ(ϵ) > 0 such that, for any
t, s ∈ [0, 1] with |t− s| < δ we have

n∑
α=0

∣∣γ̇α(t)− γ̇α(s)
∣∣ < ϵ. (1)

For any given ϵ > 0 and δ = δ(ϵ) as above, let us consider the partition {tk}Nk=0 of [0, 1] with N = δ−1

such that
tk = kδ.

If we de�ne, for k = 0, . . . , N − 1, the constant vectors

γ̇k
.
=

1

tk+1 − tk

� tk+1

tk

γ̇(t) dt,

the bound (1) implies that

sup
t∈[tk,tk+1]

n∑
α=0

∣∣γ̇α(t)− γ̇α
k

∣∣ < ϵ. (2)

Note also that, since γ̇(t) is a causal, future directed vector and the future timecone is a convex set,
the constants γ̇k are also causal and future directed.

Let v = (1, 0, . . . , 0). We will de�ne the piecewise constant curve γ̃ : [0, 1) → R
n+1 as follows:

γ̃ϵ(t) = γ̇k(t) + ϵv if t ∈ [tk, tk+1)

and we will set

γϵ(t) = γ(0) +

� t

0

γ̃ϵ(s) ds

and
qϵ = γϵ(1).

Note the following facts:
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� γϵ is a polygonal curve connecting p to qϵ; the polygonal vertices of γϵ are the points pk = γϵ(tk)
which can be explicitly computed from the formula of γϵ and the fact that γ̃ϵ is piecewise
constant:

pk = p+
k−1∑
l=0

δ · (γ̇l + ϵv).

� Since γ̇k is future directed causal and v is future directed timelike, −→pkpk+1 = δ · (̇γk + ϵv) is
future directed and timelike. Therefore, −→pqϵ =

∑N−1
k=0

−→pkpk+1 is also future directed and timelike
(thus, qϵ ∈ I+(p)).

� The de�nition of γ̇k implies that
� tk+1

tk

γ̇k dt =

� tk+1

tk

γ̇(t) dt.

Therefore, we have

qϵ = γϵ(1)

= γ(0) +

� 1

0

γ̃ϵ(s) ds

= γ(0) +
N−1∑
k=0

� tk+1

tk

(γ̇k + ϵv) ds

= γ(0) + ϵv +
N−1∑
k=0

� tk+1

tk

γ̇k ds

= γ(0) + ϵv +
N−1∑
k=0

� tk+1

tk

γ̇(s) ds

= γ(0) + ϵv +

� 1

0

γ̇(s) ds

= γ(1) + ϵv

= q + ϵv

and, thus, qϵ → q as ϵ → 0.

� For any k = 0, . . . , N − 1 and any t ∈ (tk, tk+1), we have

γ̇ϵ(t) = γ̇k + ϵv.

Thus, in view of the bound (2) on the di�erence between γ̇(t) and γ̇k, we can estimate for any
k = 0, . . . , N1 and any t ∈ (tk, tk+1)

lim
ϵ→0

(
max

k=0,...,N−1
α=0,...n

sup
t∈(tk,tk+1)

∣∣γ̇α(t)− γ̇α
k

∣∣+ ϵ

n∑
α=0

|vα|
)
= 0
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and, therefore (since ∥γ̇∥η is a continuous function of {γ̇α}nα=0):

lim
ϵ→0

(
sup

t∈(0,1)

∣∣∣∥γ̇ϵ(t)∥η − ∥γ̇(t)∥η
∣∣∣) → 0.

Therefore:

∣∣ℓ(γ)− ℓ(γϵ)
∣∣ = ∣∣∣N−1∑

k=0

(� tk+1

tk

(
∥γ̇ϵ(t)∥η − ∥γ̇(t)∥η

)
dt
)∣∣∣

⩽
N−1∑
k=0

(tk+1 − tk) sup
t∈(tk,tk+1)

∣∣∣∥γ̇ϵ(t)∥η − ∥γ̇(t)∥η
∣∣∣

⩽ sup
t∈(0,1)

∣∣∣∥γ̇ϵ(t)∥η − ∥γ̇(t)∥η
∣∣∣

ϵ→0−−→ 0.

The last two points above are precisely Conditions 1 and 2 on qϵ and γϵ.

2.3 Let (M, g) be a smooth Lorentzian surface (i.e. 2-dimensional manifold).

(a) Show that for any p ∈ M, there exists an open neighborhood U of p and a local system
of coordinates (u, v) on U such that

g = Ω(u, v)dudv,

where Ω ∈ C∞(U) does not vanish in U (such a coordinate system is called a characteristic
or double null system).

(b) Deduce that every smooth Lorentzian surface is locally conformally equivalent to an open
subset of the Minkowski space (R1+1, η) (recall that a similar fact also holds for Riemannian

surfaces; in that case, a coordinate system exhibiting this equivalence is called isothermal).

Solution. (a) For any p ∈ M, let (x1, x2) be a local coordinate system in a neighborhood V of p;
without loss of generality, we can assume that (x1(p), x2(p)) = (0, 0). Since M is two dimensional,

the null cone Nq ⊂ TqM for every q ∈ V consists of two intersecting straight lines ℓ
(1)
q , ℓ

2)
q ⊂ TqM.

Let us, therefore, choose two smooth null vector �elds E1 and E2 on a (possibly smaller) open

neighborhood V ′ of p such that Ei|q spans the null line l
(i)
q for every q ∈ V ′. Those vector �elds can

be constructed explicitly: If, for i = 1, 2, Ei = E1
i

∂
∂x1 +E2

i
∂

∂x1 are the components of Ei in the (x1, x2)
coordinate system, then the two vectors

(
E1

i (q), E
2
i (q)

)
∈ R

2 are roots of the quadratic form

Qq(y
1, y2) = g11(q)(y

1)2 + 2g12(q)y
1y2 + g22(y

2)2

on R
2. This quadratic form has coe�cients depending smoothly on q (since g was assumed to be

smooth) and is of hyperbolic signature since g is Lorentzian (i.e. g212 − g11g22 < 0); therefore, for
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any q ∈ V , Qq(y
1, y2) the roots of Qq(y

1, y2) consist of two distinct straight lines of R2 passing
through 0 and depending smoothly on q. We can then choose

(
E1

1(q), E
2
1(q)

)
and

(
E1

2(q), E
2
2(q)

)
to

be generators of these lines satisfying (E1
i )

2(q) + (E2
i )

2(q) = 1.1

We will construct the coordinate functions u, v : V ′′ ⊂ V → R by the requirement that their level
sets in V ′′ (i.e. the curves {u = const} and {v = const}) are integral curves of the vector �elds E1, E2,
respectively; note that this requirement does not uniquely determine u, v, since any reparametrization
of the form u′ = f1 ◦ u and v′ = f2 ◦ v for smooth and invertible functions f1, f2 : R → R will have
the same level sets.

To this end, let γ : R → M be a smooth curve such that γ(0) = p and γ̇(0) ∈ TpM \ 0 is
transversal to both E1|p, E2|p. By continuity, there exists a δ > 0 such that γ̇(s) is transversal to
E1|γ(s), E2|γ(s) for all s ∈ (−δ, δ). Let us de�ne the following open neighborhoods of p:

V1 =
{
q ∈ V : q belongs to an integral curve of E1 passing through γ

(
(−δ, δ)

)}
and

V2 =
{
q ∈ V : q belongs to an integral curve of E2 passing through γ

(
(−δ, δ)

)}
Let us also set V ′′ = V1 ∩ V2. Then, we can construct the functions u, v : V ′′ → R by solving the
following initial value problems with initial data on the curve γ

(
(−δ, δ)

)
:{

E1(u) = 0,

u(γ(s)) = s for s ∈ (−δ, δ)

{
E2(v) = 0,

v(γ(s)) = s for s ∈ (−δ, δ).

Notice that (u(p), v(p)) = (0, 0) and u = v on the curve γ ∩ V ′′ = γ
(
(−δ, δ)

)
.

In order to say that (u, v) form a local system of coordinates around p, we have to show that the
map (u, v) : V ′′ → R

2 is a di�eomorphism on its image in a neighborhood of p, or, equivalently, that
the change of coordinates (x1, x2) → (u, v) is non-singular in a neighborhood of (x1(p), x2(p)) = (0, 0).
By the inverse function theorem, it su�ces to show that the Jacobian matrix

J =

[
∂u
∂x1

∂u
∂x2

∂v
∂x1

∂v
∂x2

]
is non-degenerate at p. To this end, we have to compute ∂iu(p) and ∂iv(p). In view of the de�nition
of the function u, at p = γ(0) we have

E1(u)|p = 0 and γ̇(0)(u) = 1

which can be reexpressed in the (x1, x2) coordinate system as{
E1

1
∂u
∂x1

(p) + E2
1

∂u
∂x2

(p) = 0

γ̇1(0) ∂u
∂x1

(p) + γ̇2(0) ∂u
∂x2

(p) = 1
⇔

[
E1

1(p) E2
1(p)

γ̇1(0) γ̇2(0)

][
∂u
∂x1

(p)
∂u
∂x2

(p)

]
=

[
0
1

]
.

1A di�erent way of choosing
(
E1

i (q), E
2
i (q)

)
could be as follows: Assuming without loss of generality that g11(p) ̸= 0

(and hence g11 ̸= 0 in a neighborhood of p), then, setting λi =
E1

i

E2
i
, we obtain that λi must satisfy the quadratic equation

g11(q)λ
2
i + 2g12(q)λi + g22 = 0, so we can pick λ1(q) and λ2(q) to be the two roots of this equation.

Page 7



EPFL� Fall 2024

SOLUTIONS: Series 2

Di�erential Geometry IV:

General Relativity
G. Moschidis

19 Sep. 2024

Since we assumed that the vectors γ̇(0), E1 ∈ TpM are transversal (i.e. not collinear), the matrix on
the left hand side above has rank 2 and is therefore invertible; we can thus write:[

∂u
∂x1

(p)
∂u
∂x2

(p)

]
=

[
E1

1(p) E2
1(p)

γ̇1(0) γ̇2(0)

]−1 [
0
1

]
.

Working similarly for the function v, we infer:[
∂v
∂x1

(p)
∂v
∂x2

(p)

]
=

[
E1

2(p) E2
2(p)

γ̇1(0) γ̇2(0)

]−1 [
0
1

]
.

Since the vectors E1|p, E2|p are not collinear, we can readily compute that the vectors

[
∂u
∂x1

(p)
∂u
∂x2

(p)

]
and[

∂v
∂x1

(p)
∂v
∂x2

(p)

]
obtained from the above expressions (using the formula for the inverse of a 2×2 matrix) are

not collinear either; thus, the Jacobian matrix J(p) has rank 2 and is, therefore, invertible. Hence,
(u, v) de�ne a coordinate chart in a neighborhood of p.

In the (u, v) coordinate system, the coordinate vector �eld ∂
∂u

is tangent to the coordinate curve
{v = const}. In view of the fact that E2(v) = 0, this means that ∂

∂u
∥ E2 and, therefore,

∂
∂u

is null,
i.e.

guu = g
( ∂

∂u
,
∂

∂u

)
= 0.

Similarly, ∂
∂v

∥ E1 and, therefore,

gvv = g
( ∂

∂v
,
∂

∂v

)
= 0.

As a result,

g = guu(du)
2 + 2guvdudv + gvv(dv)

2

= 2guvdudv.

Of course, guv cannot vanish at any point in the region where (u, v) is a coordinate system (if
guv(q) = 0, then g|q = 0, which would violate the assumption that g|q is non-degenerate). Therefore,
guv has a constant sign; by switching u → −u if necessary, we can assume that guv > 0. Thus, setting

Ω
.
= 2guv,

we obtain the required expression.

(b) On Minkowski spacetime (R1+1, η), we can introduce the standard double null coordinate
system by setting

v̄ = x0 + x1,

ū = x0 − x1.
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In these coordinates, the Minkowski metric η takes the form

η = −(dx0)2 + (dx1)2

= −
(dv̄ + dū

2

)2

+
(
d
v̄ − dū

2

)2

= −dūdv̄.

Returning to our 2-dimensional Lorentzian manifold (M, g), for any point p ∈ M, let (u, v) be
the double null coordinate system in a neighborhood V of p constructed in part (a); recall that, in
these coordinates

g = Ωdudv.

Let us de�ne the map ϕ : V → R
1+1 so that, in the (ū, v̄) coordinates on R

1+1:(
ϕū(u, v), ϕv̄(u, v)

)
= (u, v))

Then we can immediately compute that

ϕ∗η = (ϕ∗dū)(ϕ∗dv̄)

ū(u,v)=u
v̄(u,v)=v

= dudv

and, therefore,
ϕ∗η = Ω−1 · g.

Therefore, the map ϕ : (V , g) → (ϕ(V), η) is conformal.

*2.4 In this exercise, we will show that there are topological obstructions to a manifold admitting
a Lorentzian metric; not every smooth manifold admits one. To this end, let us adopt the
following de�nition: For any Lorentzian inner product space (V,m), we will call any 2-element
set of the form {u,−u} (where u ∈ V \ 0) a line seed. A line seed X = {u,−u} will be called
causal if u ∈ V is a causal vector. We will also de�ne the trivial line seed to be the pair {0,−0}.
Given two causal line seeds X + {u,−u} and Y = {v,−v}, then exactly one of the vectors
+v and −v belongs to the same timecone as u. We will de�ne the sum X + Y as the seed
{u+ v,−u− v} if u, v belong to the same time cone and as {u− v,−u+ v} otherwise. We will
extend this de�nition to include the trivial line seed.

(a) Verify that, with the addition operator de�ned above, X1 +X2 is a causal line seed if X1,
X2 are causal line seeds or if one of them is causal and the other is the trivial line seed.

(b) Let (M, g) be a smooth Lorentzian manifold and let p ∈ M. Show that there exists an
open neighborhood U of p and a smooth causal vector �eld U ∈ Γ(U).

(c) A smooth line �eld seed on M will be an assignment of a line seed Xp = {Up,−Up} in
TpM for each p ∈ M such that, for any q ∈ M, there exists an open neighborhood V of

Page 9



EPFL� Fall 2024

SOLUTIONS: Series 2

Di�erential Geometry IV:

General Relativity
G. Moschidis

19 Sep. 2024

q and a smooth vector �eld Y ∈ Γ(V) such that Y (p) ∈ Xp for all p ∈ V .2 Show that M
as above admits a smooth causal line �eld seed.
Hint: For this part, it might be helpful to use the fact that any smooth manifold admits a

partition of unity: For any open covering {Ua}a of M, there exists a family {χβ}β of

smooth functions χβ : M → [0,+∞) satisfying the following properties:

* Each χβ is compactly supported, and its support is contained in one of the open sets

Ua.

* For each χβ, supp(χβ) intersects only �nitely many of the supports of χγ, γ ̸= β.

* For any p ∈ M,
∑

β χβ(p) = 1.

You can then use part 2.4.b to construct a smooth causal line seed �eld in a neighbor-

hood of every point in M, and then use an appropriate partition of unity to �glue� these

constructions together, utilising the notion of the sum of two causal line seeds from part

2.4.a.

(d) Deduce that the tangent bundle TM of M admits a smooth line subbundle. Can the
sphere S2 admit a Lorentzian metric?
Hint: Use the fact that, for a compact manifold M, if the tangent bundle admits a line

subbundle then the Euler characteristic χ(M) of M vanishes.

Solution. (a) It is easy to verify using the fact that each connected component C+ and C− of the
causal cone C =

{
v ∈ V \ 0 : m(v, v) ⩽ 0

}
is a convex cone that if u, v are causal vectors, then u+ v

is also a causal vector in the same cone. From this, it readily follows that X + Y , as de�ned in the
statement of the exercise, is a causal line seed if X and Y are causal line seeds or if one of them is
causal and the other the trivial line seed.

For the rest of this exercise, we will denote with F(V ) the set of line seeds in V which are either
causal or trivial. Note that + is well de�ned on F(V )× F(V ) and is associative, commutative and
has a unique zero element (the trivial line seed).

(b) Let (x0, . . . , xn) be a local system of coordinates in a neighborhood V of p. Let Up ∈ TpM\ 0
be a timelike vector, with corresponding components {Uα

p }nα=0. We can then de�ne the smooth vector
�eld U on V by the relation

U = Uα
p

∂

∂xα
,

i.e. the components of U in the (x0, . . . , xn) coordinate system are constant functions (Uα = Uα
p ).

Since the metric g is smooth, the set of timelike vectors, i.e. the set

I =
{
(q, v) ∈ TM : gq(v, v) < 0

}
is an open subset of the tangent bundle TM. Therefore, since U |p was assumed to be timelike vector
in TpM, U |q will also be timelike (and hence causal) for any point q in a su�ciently small open
neighborhood U of p.

2Note that, with this de�nition, the tangent vector Up need not even be continuous in p; we only require that there
is (locally at least) a choice between Up and −Up at every point p that results in a smooth vector �eld.
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(c) From part (b), we know that, for every point p ∈ M, there exists an open neighborhood U (p)

of p and a smooth causal vector �eld T (p) de�ned on U (p). We can, therefore, also de�ne the causal
line �eld seed X(p) on U (p) by the relation

X(p)|q = {T (p)|q,−T (p)|q} for any q ∈ U (p).

The collection of open sets {U (p)}p∈M covers the whole of M (since, for any q ∈ M, q ∈ U (q)).
We can therefore introduce a partition of unity {χβ}β subordinate to the open cover {U (p)}p∈M; this
is a set of smooth functions χβ : M → [0,+∞) (where the set of indices β is not necessarily the
same as the index set for the open cover) satisfying the following properties:

1. For any β, there exists a p = p(β) such that supp(χβ) ⊂ U (p).

2. For any p ∈ M, there exists an open neighborhood Vp of p such that only �nitely many of the
functions χβ are supported on Vp.

3. For any p ∈ M, we have ∑
β

χβ(p) = 1

(by the previous property, this is a �nite sum).

The fact that such a partition of unity always exists for any open cover of a smooth manifold is
a fundamental result in the theory of manifolds; see for example the book by Brickel and Clark:
Di�erentiable manifolds: An Introduction.

For a partition of unity {χβ}β as above, let us de�ne a (non-unique) map β → p(β) ∈ M so that
suppχβ ⊂ U (p) (such a p exists by property 1 above). For any β, let us consider the pair of vector
�elds de�ned on U (p(β))

Xβ =
{
χβ · T (p(β)),−χβ · T (p(β))

}
.

Since the support of χβ is contained in U (p(β)), the vector �elds ±χβ ·T (p(β)) can be smoothly extended
on the whole of M by simply assuming that they vanish identically on M\U (p(β)). In this way, the
pair Xβ is now a pair of smooth vector �elds on the whole ofM; at any point q ∈ M, Xβ|q ∈ F(TqM)
(see the end of the solution of part (a) for the notation F(V )) and, moreover, at any point q such that
χβ(q) > 0, the pair Xβ|q is a causal line seed (note that Xβ is the trivial line seed on M\ suppχβ).

Let us consider, now, for any point q ∈ M, the following element of F(TqM) (see, again, the end
of the solution of part (a) for the and the addition operation on F(V )):

X|q =
∑
β

Xβ|q.

This is a �nite sum, since only a �nite number of the Xβ's are non-zero at q; moreover, the sum is
well de�ned as an element of F(TqM) because, for all β, Xβ|q ∈ F(TqM). Moreover, the following
properties hold:
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� For any point p ∈ M, using the timelike vector �eld T (p) de�ned on U (p), we can de�ne
a continuous assignment of a future directed causal cone to the tangent spaces TqM for all
q ∈ U (p): For any q ∈ U (p) the future directed component C+

q of the causal cone Cq = {v ∈
TqM : v is causal} can be �xed by the condition:

C+
q =

{
v ∈ Cq : g(v, T

(p)) < 0).

(since T (p) is a smooth vector �eld, this assignment of a future directed component is continuous
in q ∈ Wp). Therefore, for any one of the vector �eld pairs Xβ =

{
χβ · T (p(β)),−χβ · T (p(β))

}
restricted over suppχβ(p), we can distinguish one future directed and one past directed element
of Xβ|U(p) ; we will denote with Xβ|+U(p) the future directed vector �eld among the pair

{
χβ ·

T (p(β))|U(p) ,−χβ · T (p(β))|U(p)

}
and with Xβ|−U(p) the past directed one. We will extend this

de�nition outside suppχβ(p) trivially, since Xβ = 0 there. Thus,

Xβ|U(p) =
{
Xβ|+U(p) , Xβ|−U(p)

}
.

Having this distinction between future and past directed causal vector �elds over U (p), it is
then easy to see that X restricted to U (p) can be written as

X|U(p) =
{
X|+U(p) , X|−U(p)

}
=

{∑
β

Xβ|+U(p) ,
∑
β

XβX|−U(p)

}
.

In particular, the line seed X|U(p) can be written as a pair of smooth vector �elds; therefore X
is a smooth line �eld.

� For any point p ∈ M, there exists at least one β such that χβ(p) > 0 (since
∑

β χβ(p) = 1).

Therefore, not all vector �elds Xβ|+U(p) vanish at p; as a result, X|p ∈ F(TpM) is not the pair
{0, 0} and is therefore a causal line seed.

Thus, we have shown that X is a smooth, causal line seed �eld on M.

(d) The existence of a smooth line seed �eld X on M determines a line subbundle of TM, namely
the subbundle E ↪→ TM spanned by the two elements of X|p = {xp,−xp} at each point p ∈ M:

E = {(p, v) ∈ TM : v = λxp for some λ ∈ R and xp ∈ X|p}.

It is known from algebraic topology that, if the tangent bundle TM of a smooth compact manifold
M admits a smooth line subbundle, then the Euler characteristic of the manifold M (which can be
computed as the alternating sum

∑n
k=0(−1)kFk of the k-dimensional faces in a �nite triangulation

of the manifold M). The Euler characteristic of the sphere Sn is 1 + (−1)n; thus, for n ∈ 2Z, the
tangent bundle of the sphere S

n cannot admit a smooth line subbundle and, therefore, Sn in this
case cannot admit a smooth Lorentzian metric.

Bonus exercise (hard): Can you construct a Lorentzian metric on S
3? (Hint: Use the Hopf

�bration S
1 → S

3 → S
2 to foliate S3 by 1-dimensional circles and use a vector �eld tangent to those

circles to construct suitable timecones.)
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