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SOLUTIONS: Series 2 General Relativity 19 Sep. 2024

2.1 On Minkowski spacetime (R"*1 ), let (2°,...,2™) be the standard Cartesian coordinate sys-
tem. Compute the induced metric on the submanifolds

S = { = 2+ D (@) = -1}
i=1
and .
st ={ = @2+ Y @) = +1}
i=1
(the latter is known as de-Sitter spacetime).

Solution. In order to compute the induced metric on those manifolds, we first have to find a
convenient parametrization of them. For S(fbl’l), it is convenient to express it as the graph of a

function over the {z° = 0} hyperplane; that is to say, we define ¥ : R* — 5(7711,1) by the relation:
1 2 ifa=0
Uyt oy = (0. . 2") with 2% = +’.|y\| , ifa=0,
ye, ifa>1,

where

n

lyll* = ()

=1

(W defined as above parametrizes only one of the two components of S(_nl’l); the other one is parametrized

using z° = —y/1 + ||y||? instead of z° = +/1 + [|y||?, but the resulting expression for the induced

metric is the same). Then, in the coordinate chart ¥~! on S(_nl’l), the induced metric g = ¥*n takes
the form:

g=Vn=—U*"(dz")* + Z U*(dx')?
i=1

= (A(VTT T + > e

=1
= @——)d iy
(5 T+ g2/

D1

Notice that the above metric is Riemannian, i.e. positive definite, since the matrix §;; — % is
positive definite (here, we used the fact that for any vector v € R™, the matrix | —v®uv has eigenvalues
(1 —||v]|*,1,...,1)). This is, of course, to be expected, since SE”{D is a spacelike hypersurface of
(R"*1.n). In polar coordinates (r,w) on R™\ 0 ~ (0, +00) x S"~1, g takes the form

1
1+ 72

g= dr? + r?gsn1(w).
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The metric ¢ is in fact isometric to the hyperbolic metric on R™.
Since S(f’l) has the topology of a cylinder, we will use for it a parametrization by R x S"~1. To

this end, let us switch to polar coordinates (2°,r,w) on R™! (so that r = /3" (2%)* € [0, +00)

and w € 5" with w® = ”371, i > 1). In these coordinates, the Minkowski metric n takes the form:
n = —(dz")? 4+ dr* + r’gsn—1(w),

while §" = {(xo,r,w) = (2?2 4+t = 1}. Let us consider the parametrization ® : R x S"~1 —

Si"’l) given by
®(t,0) = (2°,7,0) with 2°=t,r=vV1+12,0=uw.

Then, the induced metric gzg on SJ(F"’D (the so-called de-Sitter metric) takes the following form
gas = . = —<I>*(da70)2 +®.dr’+71%0d - D, ggn-1(w)

= —dt* + (d(\/l -+ t2)>2 + (14 %) ggn-1(0)

1 2 2
= 7t (L )gena (6).

2.2 On Minkowski spacetime (R"*1 ), let p, ¢ € R*™! be two points such that ¢ € I'*(p). Let also
Y0 : [0,1] — R™*! be the straight line segment connecting p to ¢ (i.e. 7(0) = p, Y(1) = ¢ and
40 = 0) and v : [0,1] — R™™ be any other causal curve such that v(0) = p and (1) = g. Show
that the corresponding lengths of the curves satisfy

U(v0) = £().

This is a manifestation of the twin paradozr in special relativity.

Hint: Approxzimate v by a polygonal causal curve and, using the inverse triangle inequality for
causal vectors, show that the line segment connecting p and q has greater or equal length to a
broken line segment connecting the same points.

Solution. Let us first assume that the curve v is a polygonal, future directed causal curve joining p
and ¢, that is to say, there exist points {p;}2_, € R"™ such that

1. po=p, by = ¢,

2. The curve ~ is the union of the line segments p,_1p; connecting prp_1 to pg; explicitly, this
means that there exists some partition {t;}2_, of [0, 1] such that to = 0, t;y = 1 and

tk 1— S S — tk .
Y(s) = =+ k Prr1 if 8 € [th, trga].
U1 — Lk b1 — U
3. Forall k=0,...,N — 1, the vectors p,_1pr are future directed and causal.
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Recall that the inverse triangle inequality states that, in any Lorentzian inner product space (V,m),
if v, w are two causal vectors belonging to the same component of the timecone, then

[o 4wl = Jlvf} + [lw].

In our case, noting that
N—-1
PG =" Prbrs1,
k=0

we have (thinking of those vectors as belonging to T,R"** ~ R"*! by translating them to have a
starting point at p):

N-1
1B, = Y 15Brest -
k=0

Noting that, in this case

N—

0(10) = I1PGlly, and €)=Y Pbrsll,.

k=0

—_

we therefore have
U(v0) = (7).

Assume, now, that v is a C* causal curve; in that case, since 7 is continuous, it has to belong
everyewhere to the same connected component of the timecone, therefore it has to be future directed
(since ¢ € I't(p)). We will show that, for any e > 0 sufficiently small, there exists a point ¢. € I"(p)
and a polygonal future directed, causal curve 7, : [0,1] — R"*! with 7.(0) = p, 7.(1) = ¢. and such
that:

e . >qase—0,
o [((y) —L(7)| = 0ase— 0.

Assume for a moment that such a point g. and curve . indeed exists for all sufficiently small € > 0.
Then, since . is a polygonal curve, by our previous argument we have

1PGely, > €(v)-

As € — 0, we have (by our assumptions on ¢, 7.) that ¢. — ¢ and ¢(y.) — £(~y). Therefore, since
HﬁH% = {(7o), taking the limit € — 0 in the above inequality results in the desired statement:

U(v0) = £().

It, therefore, remains to construct the approximating point g. and polygonal curve -, satisfying
Conditions 1 and 2 above. To this end, let us first note that any piecewise C* curve ¢ : [0, 1] — R+
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can be obtained from its derivative ¢ : [0,1] — R (here we view ((t) as a vector with base point
translated to 0) by simply integrating componentwise:

)=o)+ [ (s) ds

(in the above, + denotes simply summation in R*** ) Thus, in order to approximate v by a polygonal
curve ., we will first approximate 4 by a piecewise constant curve 7. and then set

) =20+ [ H(s) ds.

Since v is C!, 7 is continuous on [0, 1]; since, in addition, [0, 1] is a compact interval, 4 must also
be uniformly continuous. Therefore, for any € > 0, there exists a § = d(¢) > 0 such that, for any
t,s €10,1] with |t — s| < ¢ we have

Do =) < e (1)

For any given ¢ > 0 and § = §(€) as above, let us consider the partition {t;}2_, of [0,1] with N = §~!
such that
t, = ko.

If we define, for £k =0,..., N — 1, the constant vectors
. 1 bet1
Y = —/ (1) dt,
U1 — te Jy,

the bound (1) implies that

sip D) - 4] < )

tE€ltk trt1] ey

Note also that, since #(t) is a causal, future directed vector and the future timecone is a convex set,
the constants 7 are also causal and future directed.
Let v = (1,0,...,0). We will define the piecewise constant curve 7 : [0,1) — R"*! as follows:

’S/G(t) = ’)/k(t) +ev ifte [tk, tk+1)

and we will set

and

Note the following facts:
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e 7, is a polygonal curve connecting p to g.; the polygonal vertices of -, are the points pp = v.(tx)
which can be explicitly computed from the formula of . and the fact that 7. is piecewise

constant:
k—1

pr=p+ Y 6 (i +ev).
=0

e Since 7, is future directed causal and v is future directed timelike, karl =0 - (’Yk + ev) is
future directed and timelike. Therefore, ]ﬁe = fo:_ol ]ﬁkﬂ is also future directed and timelike
(thus, g € IT(p)).

e The definition of 4 implies that

tr41 tr41
/ Sy dt = / 5(8) dt.
th th

Therefore, we have

and, thus, ¢c — q as ¢ — 0.
e Forany k=0,...,N — 1 and any t € (tx,tx1), we have
Fe(t) = A + €v.
Thus, in view of the bound (2) on the difference between 4(¢) and 4, we can estimate for any

k=0,...,N; and any t € (t,tr41)

n
lim( max sup  |Y*(t) — | + € va) =0
€0 k:O,.(.).,N—l L (trrtr) ‘ () k | ; 0%

a=0,..n
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and, therefore (since ||¥], is a continuous function of {H*}7_):

iy (5w [I5e(Olly = 150l [) =0

=0 Nte(0,1

Therefore:
N-1 thi1
) =0 = [ ([ (el - 150l at)|
k=0 7tk
N-—1
< _(err—te) sup |[[Fe(@)lly — 17 (@)l
k=0 te(tk,tk+1)

< swp |I5®)ll = 130,
te(0,1)

e—0

— 0.
The last two points above are precisely Conditions 1 and 2 on ¢, and ~..

2.3 Let (M, g) be a smooth Lorentzian surface (i.e. 2-dimensional manifold).

(a) Show that for any p € M, there exists an open neighborhood U of p and a local system
of coordinates (u,v) on U such that

g = Q(u,v)dudv,

where ) € C*°(U) does not vanish in U (such a coordinate system is called a characteristic
or double null system).

(b) Deduce that every smooth Lorentzian surface is locally conformally equivalent to an open
subset of the Minkowski space (R'™!, n) (recall that a similar fact also holds for Riemannian
surfaces; in that case, a coordinate system exhibiting this equivalence is called isothermal).

Solution. (a) For any p € M, let (2!, z?) be a local coordinate system in a neighborhood V of p;
without loss of generality, we can assume that (z'(p),z?(p)) = (0,0). Since M is two dimensional,
the null cone N, C T, M for every ¢ € V consists of two intersecting straight lines Egl),ﬁg) c T,M.
Let us, therefore, choose two smooth null vector fields E; and E3 on a (possibly smaller) open
neighborhood V' of p such that E;|, spans the null line léi) for every g € V'. Those vector fields can
be constructed explicitly: If, for i = 1,2, E; = E} 52 + E?2; are the components of E; in the (z!, z?)
coordinate system, then the two vectors (E} (q), E?(¢)) € R? are roots of the quadratic form

Qu(y"v%) = g11(a) (") + 2912(q)y" v + g22(y°)?

on R?. This quadratic form has coefficients depending smoothly on ¢ (since g was assumed to be
smooth) and is of hyperbolic signature since g is Lorentzian (i.e. g% — g11922 < 0); therefore, for
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any ¢ € V, Q,(y',y?) the roots of Q,(y',y*) consist of two distinct straight lines of R? passing
through 0 and depending smoothly on g. We can then choose (E}(q), Ef(q)) and (E3(q), E%(q)) to
be generators of these lines satisfying (E})?(q) + (E?)?(¢q) = 1.1

We will construct the coordinate functions u,v : YV’ C YV — R by the requirement that their level
sets in V" (i.e. the curves {u = const} and {v = const}) are integral curves of the vector fields Fy, Fs,
respectively; note that this requirement does not uniquely determine u, v, since any reparametrization
of the form v’ = f; ou and v' = f; o v for smooth and invertible functions fi, fo : R — R will have
the same level sets.

To this end, let v : R — M be a smooth curve such that v(0) = p and §(0) € T,M \ 0 is
transversal to both Ei|,, Es|,. By continuity, there exists a § > 0 such that 5(s) is transversal to
E1ly(s), Ealy(s) for all s € (=6, 8). Let us define the following open neighborhoods of p:

= {q €V : q belongs to an integral curve of F; passing through 7((—5, 5))}

and
Vy = {q €V : q belongs to an integral curve of Fy passing through 7((—5, 5))}

Let us also set V" = V; N V,. Then, we can construct the functions u,v : V” — R by solving the
following initial value problems with initial data on the curve ((—4,9)):

{Eﬂu) 0 {Eg(v) 0
u(y(s)) = s for s € (—0,9) v(v(s)) = s for s € (=9,9).

Notice that (u(p),v(p)) = (0,0) and u = v on the curve y N V" = v((-4,9)).

In order to say that (u,v) form a local system of coordinates around p, we have to show that the
map (u,v) : V" — R? is a diffeomorphism on its image in a neighborhood of p, or, equivalently, that
the change of coordinates (z', 2?) — (u,v) is non-singular in a neighborhood of (z'(p), z*(p)) = (0, 0).
By the inverse function theorem, it suffices to show that the Jacobian matrix

Ou  Ou

_ 8:1?1 81’2

J = Qv v
o0x1 0z

is non-degenerate at p. To this end, we have to compute J;u(p) and d;v(p). In view of the definition
of the function u, at p = v(0) we have

Ei(u)], =0 and 4(0)(u) =1
which can be reexpressed in the (2!, 2?) coordinate system as
{E% e (p) + BT 5 (p) = [5—;@)] B H
du o :
PH0) g (P) +7 (0)5—(29) =1 )] L

LA different way of choosing (E}(q), EZ(q)) could be as follows Assuming without loss of generality that g11(p) # 0

(and hence g11 # 0in a neighborhood of p), then, setting A; = we obtain that A; must satisfy the quadratic equation

E2’
911(@)A? + 2912(q)\i + g22 = 0, so we can pick A1(q) and A2(q) to be the two roots of this equation.
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Since we assumed that the vectors 4(0), Ey € T, M are transversal (i.e. not collinear), the matrix on
the left hand side above has rank 2 and is therefore invertible; we can thus write:

[5—;(19)

2 (p)

Working similarly for the function v, we infer:

[aa—;(p)

2 (p)

Ju
. . . B (D)
Since the vectors Ej|,, Es|, are not collinear, we can readily compute that the vectors lafj ] and

8
B—M(P)
9
32 (D)
22 (p)
not collinear either; thus, the Jacobian matrix J(p) has rank 2 and is, therefore, invertible. Hence,
(u,v) define a coordinate chart in a neighborhood of p.
In the (u,v) coordinate system, the coordinate vector field 5% is tangent to the coordinate curve
{v = const}. In view of the fact that Ey(v) = 0, this means that 2 || Es and, therefore, - is null,

i.e. 9 9
o = (5 50) =

] obtained from the above expressions (using the formula for the inverse of a 2 x 2 matrix) are

Similarly, % || E1 and, therefore,

As a result,

G = Guu(dw)? + 2gupdudv + gy, (dv)?
= 2gupdudv.

Of course, g,, cannot vanish at any point in the region where (u,v) is a coordinate system (if
Guv(q) = 0, then g|, = 0, which would violate the assumption that g|, is non-degenerate). Therefore,
Juvy has a constant sign; by switching © — —u if necessary, we can assume that g,, > 0. Thus, setting

Q i 29uv7

we obtain the required expression.

b) On Minkowski spacetime 31 1, , We cal introduce the standard double null coordinate
n
systeln l)y setting

S]
I
88
(=)
+
88

|
Il
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In these coordinates, the Minkowski metric n takes the form
n=—(dz")* + (dz*)”
B _(dv—l—du>2 L (d@ — du>2
B 2 2
= —dudv.

Returning to our 2-dimensional Lorentzian manifold (M, g), for any point p € M, let (u,v) be
the double null coordinate system in a neighborhood V of p constructed in part (a); recall that, in
these coordinates

g = Qdudv.

Let us define the map ¢ : V — R'*! so that, in the (u,7) coordinates on R!*!:

(6" (w,v), 0" (u,v)) = (u,v))

Then we can immediately compute that

¢ = (¢.du)(¢.dv)

a(u,v)=u
T)(ui):v

dudv

and, therefore,
¢ =Q " g.
Therefore, the map ¢ : (V,g) — (¢(V),n) is conformal.

*2.4 In this exercise, we will show that there are topological obstructions to a manifold admitting
a Lorentzian metric; not every smooth manifold admits one. To this end, let us adopt the
following definition: For any Lorentzian inner product space (V,m), we will call any 2-element
set of the form {u, —u} (where u € V'\ 0) a line seed. A line seed X = {u, —u} will be called
causal if u € V' is a causal vector. We will also define the trivial line seed to be the pair {0, —0}.

Given two causal line seeds X + {u, —u} and Y = {v, —v}, then exactly one of the vectors
+v and —v belongs to the same timecone as u. We will define the sum X 4+ Y as the seed
{u+v, —u — v} if u,v belong to the same time cone and as {u — v, —u+ v} otherwise. We will
extend this definition to include the trivial line seed.

(a) Verify that, with the addition operator defined above, X; + X3 is a causal line seed if X7,
X, are causal line seeds or if one of them is causal and the other is the trivial line seed.

(b) Let (M, g) be a smooth Lorentzian manifold and let p € M. Show that there exists an
open neighborhood U of p and a smooth causal vector field U € I'(U).

(¢) A smooth line field seed on M will be an assignment of a line seed X, = {U,,—U,} in
T, M for each p € M such that, for any ¢ € M, there exists an open neighborhood V of
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Solution.

¢ and a smooth vector field Y € I'(V) such that Y (p) € X, for all p € V.2 Show that M
as above admits a smooth causal line field seed.

Hint: For this part, it might be helpful to use the fact that any smooth manifold admits a
partition of unity: For any open covering {U,}a of M, there exists a family {xs}s of
smooth functions xg : M — [0, +00) satisfying the following properties:

* Bach xp s compactly supported, and its support is contained in one of the open sets
U,.

« For each xg, supp(xp) intersects only finitely many of the supports of x~, v # [.

x Foranyp e M, > 5xs(p) = 1.

You can then use part 2.4.b to construct a smooth causal line seed field in a neighbor-
hood of every point in M, and then use an appropriate partition of unity to “glue” these
constructions together, utilising the notion of the sum of two causal line seeds from part
2.4.a.

Deduce that the tangent bundle T M of M admits a smooth line subbundle. Can the
sphere 5% admit a Lorentzian metric?

Hint: Use the fact that, for a compact manifold M, if the tangent bundle admits a line
subbundle then the Fuler characteristic x(M) of M wvanishes.

(a) It is easy to verify using the fact that each connected component C', and C_ of the

causal cone C' = {v e V\0: m(v,v) < O} is a convex cone that if u, v are causal vectors, then u 4 v
is also a causal vector in the same cone. From this, it readily follows that X + Y, as defined in the
statement of the exercise, is a causal line seed if X and Y are causal line seeds or if one of them is
causal and the other the trivial line seed.

For the rest of this exercise, we will denote with F (V') the set of line seeds in V' which are either
causal or trivial. Note that + is well defined on F(V') x F(V) and is associative, commutative and
has a unique zero element (the trivial line seed).

(b) Let (2%, ..., 2™) be a local system of coordinates in a neighborhood V of p. Let U, € T,M \ 0
be a timelike vector, with corresponding components {Ug'}7_,. We can then define the smooth vector
field U on V by the relation

0
_ @
U=U, g
i.e. the components of U in the (z°,...,2") coordinate system are constant functions (U = Us).

Since the metric g is smooth, the set of timelike vectors, i.e. the set

Z={(q,v) € TM: g4(v,v) <0}

is an open subset of the tangent bundle T M. Therefore, since U|, was assumed to be timelike vector
in T,M, U|, will also be timelike (and hence causal) for any point ¢ in a sufficiently small open
neighborhood U of p.

?Note that, with this definition, the tangent vector U, need not even be continuous in p; we only require that there
is (locally at least) a choice between U, and —U, at every point p that results in a smooth vector field.
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(¢) From part (b), we know that, for every point p € M, there exists an open neighborhood ¢
of p and a smooth causal vector field T defined on U®. We can, therefore, also define the causal
line field seed X® on U® by the relation

X(p)’q — {T(p)’q’ _T(p)’q} for any ¢ € U™,

The collection of open sets {U®},crq covers the whole of M (since, for any ¢ € M, q € UD).
We can therefore introduce a partition of unity {xs}s subordinate to the open cover {U®},c; this
is a set of smooth functions x3 : M — [0,400) (where the set of indices 5 is not necessarily the
same as the index set for the open cover) satisfying the following properties:

1. For any 3, there exists a p = p(3) such that supp(xz) C U®.

2. For any p € M, there exists an open neighborhood V, of p such that only finitely many of the
functions sz are supported on V,.

3. For any p € M, we have

> xslp) =1
5

(by the previous property, this is a finite sum).

The fact that such a partition of unity always exists for any open cover of a smooth manifold is
a fundamental result in the theory of manifolds; see for example the book by Brickel and Clark:
Differentiable manifolds: An Introduction.

For a partition of unity {xs}s as above, let us define a (non-unique) map  — p() € M so that
suppxg C UP) (such a p exists by property 1 above). For any f3, let us consider the pair of vector
fields defined on U®(®)

X5 = {Xﬁ . T(p(ﬁ))’ —X5 - T(p(ﬂ))}.

Since the support of xg is contained in UPPB)) the vector fields j:x/g‘T(p(ﬁ)) can be smoothly extended
on the whole of M by simply assuming that they vanish identically on M \ «®¥)_ In this way, the
pair X3 is now a pair of smooth vector fields on the whole of M; at any point ¢ € M, Xg|, € F(T,M)
(see the end of the solution of part (a) for the notation F(V')) and, moreover, at any point ¢ such that
x5(q) > 0, the pair Xg|, is a causal line seed (note that Xp is the trivial line seed on M \ suppyg).

Let us consider, now, for any point ¢ € M, the following element of F (7, M) (see, again, the end
of the solution of part (a) for the and the addition operation on F(V)):

Xl = ZXﬁ‘q-
B

This is a finite sum, since only a finite number of the Xjz’s are non-zero at ¢; moreover, the sum is
well defined as an element of F(7,M) because, for all 5, Xg|, € F(T,M). Moreover, the following
properties hold:
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e For any point p € M, using the timelike vector field T® defined on U™, we can define
a continuous assignment of a future directed causal cone to the tangent spaces T, M for all
q € UP): For any ¢ € UP) the future directed component C’; of the causal cone C;, = {v €
T,M : v is causal} can be fixed by the condition:

Cr={veC,: gv,T?) <0).

(since T'?) is a smooth vector field, this assignment of a future directed component is continuous
in ¢ € W,). Therefore, for any one of the vector field pairs Xz = {x5 - T®?¥), —y, - TCEN}
restricted over suppxs(p), we can distinguish one future directed and one past directed element
of Xglyw; we will denote with X[, the future directed vector field among the pair {xs -
T®E |y, —xp - TP |0} and with Xgslym the past directed one. We will extend this
definition outside suppygp) trivially, since Xz = 0 there. Thus,

XB|M<P) = {X,B|Z;<p)’ XﬁE@)}-

Having this distinction between future and past directed causal vector fields over U®), it is
then easy to see that X restricted to U® can be written as

Xlyw = {X‘;r(p)a X|&<p)}

= {Zxﬁ‘;j(?)? ZXﬁXE(p)}'
B B

In particular, the line seed X|,) can be written as a pair of smooth vector fields; therefore X
is a smooth line field.

e For any point p € M, there exists at least one 3 such that xs(p) > 0 (since 35 xs(p) = 1).
Therefore, not all vector fields Xﬂ;m vanish at p; as a result, X|, € F(7,M) is not the pair
{0,0} and is therefore a causal line seed.

Thus, we have shown that X is a smooth, causal line seed field on M.

(d) The existence of a smooth line seed field X on M determines a line subbundle of T M, namely
the subbundle E < T'M spanned by the two elements of X|, = {z,, —z,} at each point p € M:

E={(p,v) e TM: v= DAz, for some A € R and z, € X|,}.

It is known from algebraic topology that, if the tangent bundle T M of a smooth compact manifold
M admits a smooth line subbundle, then the Euler characteristic of the manifold M (which can be
computed as the alternating sum Y ,_,(—1)*Fj of the k-dimensional faces in a finite triangulation
of the manifold M). The Euler characteristic of the sphere S" is 1 + (—1)"; thus, for n € 27, the
tangent bundle of the sphere §" cannot admit a smooth line subbundle and, therefore, 5" in this
case cannot admit a smooth Lorentzian metric.

Bonus exercise (hard): Can you construct a Lorentzian metric on $3? (Hint: Use the Hopf
fibration St — 8% — $? to foliate $3 by 1-dimensional circles and use a vector field tangent to those
circles to construct suitable timecones.)
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